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In this paper, for a number of example systems, optimal schedules for simulated
annealing with a modified Tsallis statistics for various parameters q are analyzed. It
turns out that in general depending on the objective function (minimizing the mean
energy or maximizing the ground state probability), different schedules have to be
chosen. Furthermore, the optimal objective function value, reached with the optimal
schedule, shows a monotonic dependency on q, where better values are reached for
smaller q. Thus, in stochastic optimization the limit case q → −∞ corresponding to
threshold accepting should be chosen in order to get the best possible optimization
results with as little effort as possible. c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

In stochastic optimization, random walk algorithms with various acceptance rules are
used to find the ground state or energetically low lying states of complex systems or other
optimization problems. The prototype of these algorithms is the classical simulated anneal-
ing, introduced by Kirkpatrick et al. [10] and Černy [3], which is based on the Metropolis
acceptance probability [13]. The Metropolis acceptance probability is widely used to sim-
ulate thermal equilibrium properties of physical systems. In the Metropolis algorithm a
“random walker” walks through the state space of the system in such a fashion that it
populates the states in the stationary distribution case according to the desired Boltzmann
distribution.

Technically to each state α an energy Eα is assigned. On the state space a neighborhood
relation, also called move class, is given; i.e., to each state α a set of neighbors N (α)

is defined. The neighborhood relation has to be symmetric; i.e., if α ∈ N (β) then also
β ∈ N (α). Such a relation defines an undirected graph structure on the state space. On this
graph the random walk takes place. Being in a certain state α of the system, the random
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walker chooses a new state β out of its neighbors with a probability �βα and accepts
the new state as the next state with a certain acceptance probability Pβα . This probability
depends on the energy difference �E = Eβ − Eα between the new and the old state and the
temperature T with which the system should be in equilibrium. In the Metropolis algorithm
this acceptance probability is

PMe(�E) =
{

1 if �E ≤ 0,

e− �E
T if �E > 0,

(1)

where T is measured in terms of energy; i.e., kB = 1.
In the implementation of the algorithm the computation of the acceptance probability

needs the evaluation of an exponential function in each step of the random walker. Thus,
Leary and Doye [12] considered downward moves only in their bassin-hopping algorithm
and restarted the searching algorithm with different starting points.

Another possibility for speeding up the computation is to consider simpler acceptance
probabilities. Dueck et al. [4] and Moscato and Fontanari [14] changed the Metropolis
acceptance probability when stepping upward in energy from an exponential to a step
function, i.e.,

PTA(�E) =
{

1 if �E ≤ T,

0 if �E > T .
(2)

This means that upward moves are only accepted up to a certain threshold T . By removing
the computation of the exponential function, the algorithm became faster, and it even seems
to yield the same if not better solutions than the Metropolis algorithm when used as an
optimization algorithm. The algorithm with acceptance probabilities (2) is called threshold
accepting.

Another technique has come up in the context of the discussion of the generalized ther-
modynamics, which was introduced in [17] and widely investigated since then (see [1] for a
review on this topic). It has been used with great success in the analysis of various systems
such as tetrapeptides [2], Ni-clusters [20], atomic interaction [8], and the traveling sales-
man problem [15]. Penna [15] and Tsallis and Stariolo [18] suggested a Tsallis acceptance
probability of the form

Pq(�E) =




1 if �E ≤ 0,(
1 − 1−q

f (q)
· �E

T

) 1
1−q

if �E > 0 and 1−q
f (q)

�E
T ≤ 1,

0 if �E > 0 and 1−q
f (q)

�E
T > 1,

(3)

depending on an additional parameter q 
= 1. Originally the function f (q) ≡ 1 was used
in generalized simulated annealing and fast simulated annealing (see for instance [11, 19]).
In [7] it is shown that the Tsallis acceptance probability can be modified using the function

f (q) =
{

2 − q for q < 2,

1 for q ≥ 2
(4)

such that for q < 2 the integral over the probabilities to go upward in energy is equal to
the temperature, analogously to Metropolis or threshold accepting, whereas for q ≥ 2 the
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original Tsallis acceptance probability is recovered. The limit q → 1 yields the Metropolis
acceptance probability, analogously to the original Tsallis acceptance probability (3), but
furthermore q → −∞ gives threshold accepting [7]. In the following, P1 and P−∞ refer to
Metropolis and threshold, respectively.

Based on the acceptance rule (3) the time development of pt
α , the probability to be in

state α at time step t , is described by the master equation

pt+1
α =

∑
β

�αβ(T t+1)pt
β, (5)

with the transition probabilities �αβ(T t ) = �αβ × Pq(�E). Here �αβ is the probability of
selecting the neighbor α being in state β and Pq(�E) is the acceptance probability (3).

The simplest case for �αβ is a uniform selection probability 1/|N (β)| where every
neighbor is selected with equal probability. A different choice is needed for complex systems
with a huge number of states. Such systems can be simplified by lumping together states
with equal energies and equal neighborhoods. In the simplified system each state α has a
degeneracy gα , which is a natural number counting the states that are lumped together to
state α. For such systems an often and here used choice for �αβ is

�αβ = c

{
0 if α 
∈ N (β),

gα if α ∈ N (β),

where c is a constant setting the overall time scale.
The parameter T in (3) is still called temperature in analogy to the classical Metropo-

lis acceptance probability (1). For T = ∞ all moves are accepted; i.e., �αβ(∞) = �αβ .
The lower the temperature becomes, the lower the probability to move upward in energy
becomes. Finally, for T = 0, only moves downward in energy are accepted.

When using the modified Tsallis statistics in simulated annealing, of course as in the
classical simulated annealing algorithm with Metropolis acceptance probability (1), the final
value of the objective function after a given number of optimization steps strongly depends
on the chosen temperature sequence. Thus, the question arises as to which temperature
schedule is optimal. For a lot of example systems, different annealing schedules, sometimes
also with varying the Tsallis parameter q, are analyzed in the literature (see for instance [11]).

While determining optimal temperature schedules for arbitrary complex optimization
problems is beyond the current scope, we here analyze some simple example problems.
Using a discrete version of optimal control theory [5], the optimal schedule for these example
systems is computed, and the dependency of these schedules and the resulting value for the
objective function on the Tsallis parameter q will be investigated. We consider two different
objective functions: minimizing the final mean energy Ē and maximizing the probability
pGS to be in the ground state at the end.

2. DISCRETE OPTIMAL CONTROL THEORY

We start with a given probability vector p
¯

0. The dynamics of p
¯

t are given by the master
equation (5). Under this restriction, an optimal temperature schedule has to be determined
such that after a given number N of time steps the objective function

f = E
¯

T p
¯

N (6)
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is minimal. If we want to minimize the final mean energy, then the vector E
¯

in (6) contains the
energies of all states, whereas for maximizing the final ground state probability EGS = −1,
and all other components of E

¯
are zero.

Introducing Lagrange parameters [5] the objective function (6) can be written as

f = E
¯

T p
¯

N +
N−1∑
t=0

(�
¯

t+1)T(�
¯̄
(T t+1) p

¯
t − p

¯
t+1)

= (E
¯

T − (�
¯

N )T) p
¯

N −
N−1∑
t=1

(�
¯

t )T p
¯

t +
N−1∑
t=0

(�
¯

t+1)T�
¯̄
(T t+1) p

¯
t .

The first variation of the objective function is

δ f = (E
¯

T − (�
¯

N )T)δ p
¯

N +
N−1∑
t=1

((�
¯

t+1)T�
¯̄
(T t+1) − (�

¯
t )T) δ p

¯
t

+
N−1∑
t=1

∂(�
¯

t+1)T�
¯̄
(T t+1) p

¯
t

∂T t+1
δT t+1,

which has to be zero in the minimum. This results in

�
¯

N = E
¯
, �

¯
t = �

¯̄
(T t+1)T�

¯
t+1,

and (�
¯

t+1)T�
¯̄
(T t+1) p

¯
t has to be in a minimum according to T t+1. Under these conditions

an iterative procedure to compute the optimal temperature schedule is developed in [5].
Starting with an arbitrary temperature sequence T 1,i=0, T 2,i=0, . . . , T N ,i=0 this algorithm
goes as follows, where i denotes the iteration index:

1. Compute p
¯

t+1,i=0 = �
¯̄
(T t+1,i=0) p

¯
t,i=0, t = 0, 1, . . . , N − 1.

2. Compute �
¯

t−1,i = �
¯̄
(T t,i )T�

¯
t,i , t = N , N − 1, . . . , 2.

3. Compute T t+1,i+1 such that (�
¯

t+1,i )T�
¯̄
(T t+1,i+1) p

¯
t,i+1 has a minimum and determine

p
¯

t+1,i+1 = �
¯̄
(T t+1,i+1) p

¯
t,i+1, t = 0, 1, . . . , N − 1. Note that p

¯
0,i+1 is given.

4. Compare f i+1 with the previous value f i . If the difference is smaller than a chosen
accuracy, then stop the iteration; otherwise increase i and go back to 2.

In order to apply this algorithm effectively we transformed the control variables T into
x = e−1/T ∈ [0, 1], where x = 0 and x = 1 correspond to T = 0 and T = ∞, respectively,
and we divided the possible range [0, 1] for x into 1000 parts. For the resulting values
x = 0, 0.001, 0.002, . . . , 0.999, 1 we precomputed the transition matrix �

¯̄
(x). The opti-

mization is simply done by testing all possible 1001 x-values. This significantly speeds up
the computation.

3. OPTIMAL SCHEDULES FOR TEST PROBLEMS

3.1. A Simple Three State Barrier System

Let us first analyze a simple example of a three-state barrier (Fig. 1a) considered in
[9]. Such a system is the smallest building block of a complex system which consists of
many different energy barriers. As in [9] the state with the highest energy is a lumped
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FIG. 1. (a) Barrier example system with three states and (b) hierarchical barrier example system with 15 states
and three different types of barriers.

state such that the degeneracy of this state is 2. Here we fix the highest energy value to
be 10.

For various parameters q and 100 optimization steps, the optimal temperature schedules
are computed for the two objective functions (minimizing the final mean energy and maxi-
mizing the final ground state probability). These schedules do not depend on the objective
function and can be seen in Fig. 2a. For all q values the temperature in the last step is chosen
to be zero. Hence, in the last step all the probability flows down from the state with the
highest energy, such that the mean energy at the end is Ē = 1 − pGS. Thus, for this simple
example system minimizing Ē is closely related to maximizing pGS.

The final objective function value is plotted over the parameter q in Fig. 2b. These values
show a monotonic dependency on q, becoming better for smaller q values. Hence, for this
simple example threshold accepting seems to be the most successful optimization technique.
This is remarkable because threshold accepting is computationally much cheaper compared
to Metropolis or Tsallis, since the complicated acceptance rule (3) is replaced by a simple
step function. So for this simple example the cheapest algorithm gives the best optimization
result.
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FIG. 2. (a) Optimal schedules for the three state barrier for c = 0.25 and q = 1.5(�), 1, 0.5, 0,−0.5, −1,
−1.5, −∞(+) and (b) the corresponding final ground state probability (+) or final mean energy (×).
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FIG. 3. (a) Optimal schedules for the hierarchical barrier system for minimizing the final mean energy for q =
1(�), 0.5(∗), −0.5(×), −∞(+) and (b) the corresponding final mean energy values.

3.2. A Hierarchical Barrier System

In real systems normally there are a lot of energy barriers, each having a different height.
Therefore, the next example system is a hierarchical tree composed of three different barrier
types, as shown in Fig. 1b. The degeneracy is chosen to be an exponential function of the
energy of the states

gα = 2E(α),

since for many physical systems densities of states exponentially increasing with energy
have been found (see [16]).

As in the previous example we computed optimal annealing schedules for various param-
eter values q for both minimizing the final mean energy and maximizing the final ground
state probability. The results can be seen in Figs. 3 and 4. Since the number of states and
barriers is larger than in the previous example, 100 optimization steps are much too little;
for 100 steps we would always get constant schedules. Therefore, we increased the number
of steps to 10,000. Since the computation for such a large number of steps takes a lot of
time we iterated the transition matrix four times; i.e., we did 24 = 16 optimization steps at
once with the same temperature.

The annealing schedules become more and more step functions for decreasing q, indi-
cating that in the beginning probability is transported over the highest barrier. In the middle
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FIG. 4. (a) Optimal schedules for the hierarchical barrier system for maximizing the final ground state pro-
bability for q = 1(�), 0.5(∗), −0.5(×), −∞(+) and (b) the corresponding end ground state probability values.
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of the schedule probability is transported over the second highest barrier and after that only
transport over the lowest barrier is possible. When minimizing the final mean energy the
last optimization steps are done with T = 0 such that the probability flows as far down as
possible without crossing barriers any more, i.e., the random walkers go to the nearest local
minimum of the energy function. This is not necessary when maximizing the final ground
state probability, then only going up �E ≥ 2 has to be forbidden in the last step. Hence,
for the hierarchical barrier system obviously the optimal schedules for the two different
objective functions are different, as can be seen in Figs. 3a and 4a.

In the threshold accepting case q = −∞, due to the energy differences �E = 1, 2, 4, 8
occuring in the hierarchical barrier system, all temperatures between two successive �E
values are equivalent. Hence, the optimization step 3 (see Section 2) would give a whole
interval of optimal temperatures. The implementation by testing 1001 values of course gives
one of the end points of the optimal interval. When the transport over a larger barrier is
nearly finished and we switch to the next smaller barrier, there is a certain time interval
when two successive temperature intervals become nearly equivalent. Then the computed
optimal schedules show several jumps up and down (see Figs. 3a and 4a), which are of
course numerical effects. These jumps can also be seen for finite small q values: Since the
transition probabilities converge to step functions for q → −∞ they are also step functions
for small q values due to a finite accuracy in the computer.

As in the previous example the optimal final values of the objective function depend
monotonically on q , becoming better for smaller q (Figs. 3b and 4b). So also for this more
complex example system, the cheapest algorithm gives the best optimization result.

3.3. Random Systems

The previous two example systems showed an interesting monotonic dependency of the
optimal objective function value, reached with the optimal schedule, on the parameter q.
Hence, the question arrises if this is a general property or if this is a feature of the simple
example systems. In order to check this behavior we analyzed random systems; i.e., we
constructed a given number of states with random energy values and random neighborhood
relations, as considered in [6]. The degeneracies are again chosen to be exponential in
energy, i.e.,

gα = ⌊
eE(α)

⌋
,

where �eE(α)� denotes the largest integer not larger than eE(α).
We considered 10 different systems, each with 100 states and various connection ratios.

A connection ratio r means that from a complete neighborhood relation, where each state
is a neighbor of each other, every neighborhood connection is chosen with probability r .
We varied the connection ratio r between 0.03 and 0.3; i.e., we chose connection ratios of
0.3, 0.3

2 , 0.3
3 , . . . , 0.3

9 , 0.3
10 = 0.03. For various q values we computed the optimal schedule for

minimizing the final mean energy or maximizing the final ground state probability. Since
the state space is much larger than for the hierarchical barrier system we did 4,096,000
optimization steps (always 4,096 at once with the same temperature). The corresponding
objective function values reached at the end are shown in Fig. 5. The final mean energy of
course depends on the energy values of the states in the system and therefore largely differs
for different systems. Thus, we considered the difference to the ground state energy and
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FIG. 5. (a) Final mean energy and (b) final ground state probability reached with the optimal schedule for 10
different random systems.

plotted the ratio of the final mean energy and the mean energy of the system for infinite
temperature.

Both objective functions show a nearly monotonic dependence on q. The limit q →
∞ corresponding to threshold accepting yields the best optimization result also for these
random systems.

4. CONCLUSIONS

In this paper we investigated for a modified Tsallis statistics the optimal annealing sched-
ule for minimizing the final mean energy and for maximizing the final ground state proba-
bility. The aim was to find out whether the objective function has an influence on the optimal
annealing schedule and how the objective function value after a given number of optimiza-
tion steps, carried out with the optimal annealing schedule, depends on the parameter q.

For a simple three-state barrier we found agreement with [9]. There it was shown that
minimizing the mean energy and maximizing the final ground state probability for this
system is equivalent for Metropolis statistics. Here we found that also for the modified
Tsallis statistics for all investigated parameter values q, the optimal schedules for both ob-
jective functions are the same. On the other hand, the hierarchical barrier system showed
significantly different optimal schedules. Thus, we can conclude that in general the opti-
mal schedule will not be independent of the objective function. This of course is also the
case in classical simulated annealing with Metropolis acceptance probability or threshold
accepting.

Considering the objective function value reached after a given number of optimization
steps as a function of q we see a nearly monotonic behavior: the final mean energy increases
with q , whereas the final ground state probability decreases with q. The final objective
function value is always best for q = −∞. Let us recall that the case q = −∞ corresponds to
threshold accepting, where computing the transition probabilities is much cheaper compared
to a finite q value.

Stochastic optimization is normally applied to complex systems with a huge state space,
thus a large number of steps in a random walk is necessary to get good optimization results.
Since in every step a transition probability has to be determined, the computational effort for
determining this probability is of great importance. So our results lead to the conclusion that
in order to get best possible, optimization results with as little effort as possible, threshold
accepting should be preferred to Tsallis statistics (including Metropolis).
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